100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

MAT2611 linear_al_done_right_notes.

Rating
-
Sold
-
Pages
118
Grade
A+
Uploaded on
02-07-2023
Written in
2022/2023

MAT2611 linear_al_done_right_notes.100% CORRECT questions, answers, workings and explanations. for assistance.












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
July 2, 2023
Number of pages
118
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

MAT2611
linear_al_done_right_notes.

, Solutions for exercises/Notes for Linear
Algebra Done Right by Sheldon Axler
Toan Quang Pham

th
Monday 10 September, 2018


Contents
1. Some note before reading the book 4

2. Terminology 4

3. Chapter 1 - Vector Spaces 4
3.1. Excercises 1.B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. 1.C Subspaces.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3. Exercises 1.C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Chapter 2 - Finite-dimensional vector spaces 9
4.1. 2.A Span and linear independence . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1. Main theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2. Important/Interesting results from Exercise 2.A . . .. . . . . . . . . . . . 11
4.2. Exercises 2.A .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3. 2.B Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4. Addition, scalar multiplication of specific list of vectors . . . .. . . . . . . . . . . 15
4.5. Exercises 2B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6. 2.C Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7. Exercises 2C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. Chapter 3:Linear Maps 21
5.1. 3.A The vector space of linear maps . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2. Exercises 3A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3. 3.B Null Spaces and Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4. Exercises 3B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1. A way to construct (not) injective, surjective linear map . . . . . . . . . 25
5.4.2. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



1

,Toan Quang Pham page 2


5.5. Exercises 3C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6. 3D: Invertibility and Isomorphic Vector Spaces . . . . . . . . . . . . . . . . . . . 31
5.7. Exercises 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8. 3E: Products and Quotients of Vector Spaces . . . . . . . . . . . . . . . . . . . . 36
5.9. Exercises 3E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.10. 3F: Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.11. Exercises 3F. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. Chapter 4:Polynomials 48
6.1. Exercise 4 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7. Chapter 5:Eigenvalues, Eigenvectors, and Invariant Subspaces 50
7.1. 5A: Invariant subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2. Exercises 5A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3. 5B: Eigenvectors and Upper-Triangular Matrices . . . . . . . . . . . . . . . . . . 55
7.4. Exercises 5B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.5. 5C: Eigenspaces and Diagonal Matrices . . .. . . . . . . . . . . . . . . . . . . . . 58
7.6. Exercises 5C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8. Chapter 6:Inner Product Spaces 64
8.1. 6A: Inner Products and Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.2. Exercises 6A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.3. 6B: Orthonormal Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.4. Exercises 6B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.5. 6C: Orthogonal Complements and Minimization Problems . . . . . . . . . . . . . 77
8.6. Exercises 6C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9. Chapter 7:Operators on Inner Product Spaces 81
9.1. 7A: Self-adjoint and Normal Operators . . .. . . . . . . . . . . . . . . . . . . . . 81
9.2. Exercises 7A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.3. 7B: The Spectral Theorem. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.4. Exercises 7B .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.5. 7C: Positive Operators and Isometries . . . . . . . . . . . . . . . . . . . . . . . . 88
9.6. Exercises 7C .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.7. 7D: Polar Decomposition and Singular Value Decomposition . . . . .. . . . . . . 91
9.8. Exercises 7D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.Chapter 8:Operators on Complex Vector Spaces 97
10.1. 8A: Generalized Eigenvectors and NilpotentOperators . . . . . . . . . . . . . . . 97
10.2. Exercises 8A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3. 8B: Decomposition of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.4. Exercises 8B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.5. 8C: Characteristic and Minimal Polynomials . . . .. . . . . . . . . . . . . . . . . 105
10.6. Exercises 8C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

, Toan Quang Pham page 3


10.7. 8D: Jordan Form .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.8. Exercises 8D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.Chepter 9:Operators on Real Vector Spaces 113
11.1. 9A: Complexification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.2. Exercises 9A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.3. 9B: Operators on Real Inner Product Spaces . . . . . . . . . . . . . . . . . . . . 116
11.4. Exercises 9B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.Chapter 10:Trace and Determinant 119
12.1. 10A: Trace. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.2. Exercises 10A. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13.Summary 122

14.Interesting problems 123

15.New knowledge 123

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LOVELY01 Chamberlain College Of Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
1007
Member since
4 year
Number of followers
881
Documents
2289
Last sold
1 week ago

3,6

125 reviews

5
54
4
22
3
18
2
11
1
20

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions