100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Inorganic Chemistry 5th Edition By Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual) R281,60   Add to cart

Exam (elaborations)

Inorganic Chemistry 5th Edition By Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual)

 130 views  1 purchase
  • Course
  • Inorganic Chemistry 5e Gary Miessler, Paul Fischer
  • Institution
  • Inorganic Chemistry 5e Gary Miessler, Paul Fischer

Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual) Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual)

Preview 4 out of 231  pages

  • July 7, 2023
  • 231
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
  • Inorganic Chemistry 5e Gary Miessler, Paul Fischer
  • Inorganic Chemistry 5e Gary Miessler, Paul Fischer
avatar-seller
(Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr)

(Solution Manual, There is no Solution for Chapter 1)


CHAPTER 2: ATOMIC STRUCTURE
h 6.626  10 34 J s
2.1 a. = =  2.426  10 11 m
mv (9.110  10 –31kg)  (0.1)  (2.998  108 m s –1 )

h 6.626  1034 J s
b.  = =  6  10 34 m
mv 0.400 kg  (10 km/hr  10 m/km  1hr/3600s)
3



h 6.626  10 34 J s
c.  = = -1  9.1 10
35
m
mv 8.0 lb  0.4536 kg/lb  2.0 m s

h 6.626  10 34 J s
d. = =
mv 13.7 g  kg/10 3 g  30.0 mi hr -1  1 hr/3600s  1609.3 m/mi

 3.61 10 33 m
 1 1  hc 1
2.2 E  RH  2 – 2 ; RH  1.097 10 7 m–1  1.097 10 5 cm–1 ;   
2 nh  E __

1 1   12 
nh  4 E  RH  –   RH    20,570cm –1  4.085  10 –19 J
 4 16   64 
  4.862 10 –5 cm = 486.2 nm

 1 1   21 
nh  5 E  RH  –   RH    23,040cm –1  4.577  10 –19 J ;
 4 25   100 
  4.34110 –5 cm = 434.1 nm

 1 1   8
nh  6 E  RH  –   RH    24,380cm –1  4.841 10 –19 J ;
 4 36   36 
  4.102 10 –5 cm = 410.2 nm
 1 1   45 
2.3 E  RH 
4 –   RH    25,190cm–1  5.002 10 –19 J
 49 
 196 
1
  __  3.970 10 –5 cm = 397.0 nm


hc (6.626  1034 J s)(2.998  108 m/s)
2.4 383.65 nm E   5.178  1019 J
 (383.65 nm)(m/10 nm)9


hc(6.626  10 34 J s)(2.998  108 m/s)
379.90 nm E   5.229  10 19 J
 (379.90 nm)(m/10 nm) 9




Copyright © 2014 Pearson Education, Inc.

,2 Chapter 2 Atomic Structure

1

 1 1  1 1 E 1 E  2
E  RH  2  2  ;   and nh    
2 nh  nh
2
4 RH 4 RH 
1

1 5.178 10 19 J  2
For 383.65 nm: nh    18 
9
4 2.1787 10 J 
1

1 5.229 10 19 J  2
For 379.90 nm: nh    18 
 10
4 2.1787 10 J 

2.5 The least energy would be for electrons falling from the n = 4 to the n = 3 level:

 1 1   7 
E  RH  2  2   2.1787 10 18 J    1.059 10 19 J
3 4  144 

The energy of the electromagnetic radiation emitted in this transition is too low for
humans to see, in the infrared region of the spectrum.

2.6
E  102823.8530211 cm 1  97492.221701 cm 1  5331.6313201 cm 1
E  hc  (6.626  1034 J s)(2.998  108 m s)(100cm m)(5331.6313201 cm 1 )
E  1.059  1019 J
This is the same difference found via the Balmer equation in Problem 2.5 for
a transition from n  4 to n  3. The Balmer equation does work well for hydrogen.

2.7 a. We begin by symbolically determining the ratio of these Rydberg constants:
2 2  He + (Z He+ )2 e4 2 2  H (Z H )2 e4
RHe +  RH 
(4 0 )2 h2 (4 0 )2 h2
RHe +  He+ (Z He+ )2 4  He+
  (since Z  2 for He  )
RH  H (Z H ) 2 H
The reduced masses are required (in terms of atomic mass units):
1 1 1 1 1
   
H me m proton 5.4857990946  10 m 1.007276466812 mu
4
u
1
 1823.88 mu1;  H  5.482813  104 mu
H
1 1 1 1 1
   
He  me mHe2 5.4857990946  10 m 4.001506179125 mu
4
u
1
 1823.13 mu1;  He +  5.485047  10 4 mu
He +




Copyright © 2014 Pearson Education, Inc.

, Chapter 2 Atomic Structure 3


The ratio of Rydberg constants can now be calculated:
RHe+ 4  He+ 4(5.485047  104 mu )
   4.0016
RH H 5.482813  104 mu

b. RHe +  4.0016RH  (4.0016)(2.1787  1018 J)  8.7184  1018 J

c. The energy difference is first converted to Joules:
E  hc  (6.626  1034 J s)(2.998  108 m s)(100cm m)(329179.76197 cm 1 )
E  6.5391 1018 J
The Rydberg equation is applied, affording nearly the identical Rydberg constant for He+:
1 1 1 1
E  RHe + ( 2  2 )  6.5391 1018 J  RHe + (  )
n n 1 4
l h

RHe +  8.7188  1018 J

h2 2
2.8 a. – E ;   A sin rx  B cos sx
8 2 m x 2

= Ar cos rx – Bs sin sx
x

2 
= –Ar 2 sin rx – Bs 2 cos sx
x 2


h2

8 m
 – Ar
2
2

sin rx – Bs2 cos sx  E  A sin rx + B cos sx 

If this is true, then the coefficients of the sine and cosine terms must be independently
equal:

h 2 Ar 2 h 2 Bs 2
 EA ; = EB
8 2 m 8 2 m

8 2 mE 2
r 2  s2  ; r  s  2mE
h 2
h
b.   A sin rx ; when x  0,   A sin 0  0
when x  a,   A sin ra  0
n
 ra  n ; r  
a

r 2 h 2 n 2 2 h 2 n 2h 2
c. E  
8 2 m a 2 8 2 m 8ma 2




Copyright © 2014 Pearson Education, Inc.

, 4 Chapter 2 Atomic Structure

a a a
x 
2 n a nx  nx 
d.   dx   
2 2
A sin   dx  A
2
sin 2   d  
 a  n  a   a 
0 0 0
a
a 2 1 nx  1 2nx 
 A    – sin   1
n 2  a  4  a  0

aA 2 1 na 1 1 
 – sin2n – 0  sin0 1
n 2 a 4 4 


2
A
a


2.9 a. 3pz 4dxz




b. 3pz 4dxz




c. 3pz 4dxz

For contour map, see Figure 2.8.




Copyright © 2014 Pearson Education, Inc.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller tutorsection. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R281,60. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83614 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R281,60  1x  sold
  • (0)
  Buy now