Solutions for A First Course in Differential Equations with Modeling Applications, 12th Edition Zill (All Chapters included)
27 views 0 purchase
Course
Math
Institution
Math
Complete Solutions Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill ; ISBN13: 9780357760192. (Full Chapters included Chapter 1 to 9)....1. INTRODUCTION TO DIFFERENTIAL EQUATIONS.
2. FIRST-ORDER DIFFERENTIAL EQUATIONS.
3. MODELING WITH ...
END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
p
5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y 2 = 1, we see that it is nonlinear
in y because of y 2 . However, writing it in the form (y 2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v . However, writing it in the form (v + uv − ueu )(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y ′ = − 12 e−x/2 . Then 2y ′ + y = −e−x/2 + e−x/2 = 0.
1
, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations
6 6 −20t
14. From y = − e we obtain dy/dt = 24e−20t , so that
5 5
dy −20t 6 6 −20t
+ 20y = 24e + 20 − e = 24.
dt 5 5
15. From y = e3x cos 2x we obtain y ′ = 3e3x cos 2x−2e3x sin 2x and y ′′ = 5e3x cos 2x−12e3x sin 2x,
so that y ′′ − 6y ′ + 13y = 0.
16. From y = − cos x ln(sec x + tan x) we obtain y ′ = −1 + sin x ln(sec x + tan x) and
y ′′ = tan x + cos x ln(sec x + tan x). Then y ′′ + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y ′ = 1+2(x+2)−1/2
we have
(y − x)y ′ = (y − x)[1 + (2(x + 2)−1/2 ]
= y − x + 2(y − x)(x + 2)−1/2
= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2
= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.
An interval of definition for the solution of the differential equation is (−2, ∞) because y ′ is
not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ , n an integer, the domain of y = 5 tan 5x is
{x 5x 6= π/2 + nπ}
or {x x 6= π/10 + nπ/5}. From y ′ = 25 sec2 5x we have
y ′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .
An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x2 6= 0} or {x x 6= −2 or x 6= 2}. From y ′ =
2x/(4 − x2 )2 we have
2
1
′
y = 2x = 2xy 2 .
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).
√
20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x 6= 0 or sin x 6= 1.
Thus, the domain is {x x =6 π/2 + 2nπ}. From y ′ = − 12 (1 − sin x)−3/2 (− cos x) we have
2y ′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2 ]3 cos x = y 3 cos x.
An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller mizhouubcca. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for R551,29. You're not tied to anything after your purchase.