100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Galois theory Exam Questions and Answers 100% Pass R232,58   Add to cart

Exam (elaborations)

Galois theory Exam Questions and Answers 100% Pass

 5 views  0 purchase
  • Course
  • Galois theory
  • Institution
  • Galois Theory

Galois theory Exam Questions and Answers 100% Pass Group action -Answer-Let S be a set and let G be a group. Write Aut[Sets](S) for the group of bijective maps a : S → S (where the group law is given by the composition of maps). An action of G on S is a group homomorphism φ : G → Aut[Sets]...

[Show more]

Preview 2 out of 14  pages

  • May 5, 2024
  • 14
  • 2023/2024
  • Exam (elaborations)
  • Questions & answers
  • Galois theory
  • Galois theory
avatar-seller
Galois theory Exam Questions and Answers 100% Pass Group action -Answer -Let S be a set and let G be a group. Write Aut[Sets](S) for the group of bijective maps a : S → S (where the group law is given by the composition of maps). An action of G on S is a group homomorphism φ : G → Aut[Sets](S) S^G -Answer -S^G := {s ∈ S : γ(s) = s ∀γ ∈ G} (set of invariants of S under the action of G) Orbits of s under G -Answer -Orb(G, s) := {γ(s) : γ ∈ G} Stabiliser of s -Answer -Stab(G, s) := {γ ∈ G : γ(s) = s} Action compatible with ring structure -Answer -We shall say that the action of G on R is compatible with the ring structure of R, or that G acts on the ring R, if the image of φ lies in the subgroup Aut[Rings](R) ⊆ Aut[Sets](R) of Aut[Sets](R) Properties of the set of invariants for rings -Answer -Let G act on the ring R. (i) R^G is a subring of R. (ii) If R is a field, then R^G is a field. Symmetric polynomial -Answer -A symmetric polynomial with coefficients in R is an element of R[x1, . . . , xn]^Sn Elementary symmetric function -Answer -For any k ∈ {1, ..., n}, the polynomial k sk := Σ[i1<i2<···<ik]Π[j=1 to k]xij ∈ Z[x1,...,xn] is symmetric. It is called the k -th elementary symmetric function (in n variables) Fundamental theorem of the theory of symmetric functions -Answer -R[x1,...,xn]^Sn = R[s1,...,sn]. More precisely: Let φ : R[x1,...,xn] → R[x1,...,xn] be the map of rings, which sends xk to sk and which sends constant polynomials to themselves. Then (i) the ring R[x1,...,xn]^Sn is the image of φ; (ii) φ is injective. Some useful polynomials -Answer -(i) ∆(x1, ..., xn) := Π[i<j](xi −xj)^2 ∈ Z[x1,...,xn]^Sn; (ii) δ(x1, ..., xn) := Π[i<j](xi −xj) ∈ Z[x1, ..., xn]^An; (iii) If σ ∈ Sn, then δ(xσ(1), . . . , x σ(n)) = sign( σ)·δ(x1, ..., xn) Gauss's content function -Answer -For r∈Q s.t. |r| = p1^m1 . . . p1^mk , where m ∈ Z. We define ordp(r) := mi if p=pi and 0 otherwise. For f(x)= ∑cₙxⁿ, we define c(f)=Πp^min{ordp(ci)} i.e. product of p to their smallest power s.t. they feature in the prime factorisations of all the coefficients Field extension -Answer -Let K be a field. A field extension of K, or K -extension, is an injection K → M of fields. This injection endows M with the structure of a K -vector space. Alternate notation: M − K, M|K, M : K. We shall mostly use the notation M|K. Maps between extensions -Answer -A map from the K -extension M|K to the K -extension M′|K is a ring map M → M′ (which is necessarily injective), which is compatible with the injections K → M and K → M′. Automorphisms of extensions -Answer -If M|K is a field extension, we shall write AutK(M) for the group of bijective maps of K -extensions from M to M (where the group law is the composition of maps). In other words, the group AutK(M) is the subgroup of AutRi ngs(M), consisting of ring automorphisms, which are compatible with the K -
extension structure of M. Degree of the extension M|K -Answer -We shall write [M : K] for dimK(M)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller GraceAmelia. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R232,58. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75759 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R232,58
  • (0)
  Buy now