100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Graad 12 wiskunde notas R120,00   Add to cart

Summary

Summary Graad 12 wiskunde notas

 9 views  0 purchase

Graad 12 wiskunde notas

Preview 4 out of 51  pages

  • Yes
  • August 7, 2024
  • 51
  • 2022/2023
  • Summary
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
All documents for this subject (430)
avatar-seller
elrilombard
Graad 12




Hierdie is die oorspronklike werk van die
Platinum Graad 12 Wiskunde handboek
wat slegs deur skool_notas opgesom is.
Dit mag nie herverkoop/versprei of
onder n nuwe lisensie verkoop word nie.

, Skool Instagram : @skool_notas
Epos : skoolnotas@icloud.com

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.




Patrone rye en reekse ...................................................................................................................................................... 3
Rekeningkundige rye........................................................................................................................................................... 3
Meetkundige rye ..................................................................................................................................................................... 4
Die som van rekeningkundige reekse ................................................................................................................. 4
Die som van meetkundige reekse ........................................................................................................................... 5
Sigma-notasie ........................................................................................................................................................................... 6
Kwadratiese patrone en kombinasies van rekeningkundige en meetkundige rye .... 7
Funksies en inverse funksies ..................................................................................................................................... 8
Funksies .......................................................................................................................................................................................... 8
Die reguitlyn ................................................................................................................................................................................ 8
Die parabool............................................................................................................................................................................... 8
Die hiperbool.............................................................................................................................................................................. 9
Die eksonensiële grafiek .................................................................................................................................................10
Inverse funksies .......................................................................................................................................................................11
Eksponensiële en logaritmiese funksies..........................................................................................................12
Hersiening van eksponentwette en eksponensiële funksies .........................................................12
Logaritmes en logaritmiese funksies ..................................................................................................................13
Finansies groei en waardevermindering ....................................................................................................... 14
Hersiening Graad 11 : finansies, groei en waardevermindering ................................................. 14
Afleiding en gebruik van formules vir annuïteite .................................................................................... 14
Annuïteite : toepassing en probleemoplossing ........................................................................................ 16
Bereken tydperiodes met behulp van logaritmes .................................................................................. 18
Ontleed beleggings- en leningsopsies ............................................................................................................. 18
Trigonometrie : saamgestelde- en dubbel-identiteite ........................................................................ 20
Hersiening Graad 11 : trigonometrie ....................................................................................................................20
Afleiding van saamgestelde- en dubbel-identiteite ..............................................................................21
Los vergelykings op en bepaal die algemene oplossing................................................................ 23
Trigonometrie : probleemoplossing in twee en drie dimensies .................................................. 25
Probleme in twee dimensies ...................................................................................................................................... 25
Probleem in drie dimensies ........................................................................................................................................ 26
Veelterme (polinome)......................................................................................................................................................27
Faktoriseer derdegraadse veelterme ............................................................................................................... 27
Faktoriseer en los derdegraadse veelterme op deur die res- of faktorstelling te
gebruik .......................................................................................................................................................................................... 28


1

, Skool Instagram : @skool_notas
Epos : skoolnotas@icloud.com

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.


Differensiasie ........................................................................................................................................................................ 30
Limiete ............................................................................................................................................................................................30
Gebruik limiete om die afgeleide van ’n funksie f te definieer ................................................... 32
Difrensiasie van ’n funksie vanuit eerste beginsels ............................................................................. 32
Gebruik die spesifieke reëls van difrensiasie............................................................................................. 33
Bepaal die vergelyking van raaklyne aan grafieke .............................................................................. 34
Die tweede afgeleide ........................................................................................................................................................ 34
Skets grafieke van derdegraadse funksies ................................................................................................. 36
Optimering en veranderingstempo ................................................................................................................... 36
Analitiese meetkunde ....................................................................................................................................................37
Vergelyking van ‘n sirkel ............................................................................................................................................... 37
Vergelyking van ’n raaklyn aan ’n sirkel.......................................................................................................... 38
Euklidiese meetkunde ...................................................................................................................................................39
Hersiening Graad 11 : meetkunde.......................................................................................................................... 39
Gelykvormige veelhoeke ............................................................................................................................................... 40
Die eweredigheidstelling .............................................................................................................................................. 40
Gelykhoekige driehoeke en gelykvormigheid ............................................................................................ 42
Driehoeke met eweredige sye en gelykvormigheid .............................................................................. 42
Pythagoras se Stelling en gelykvormigheid ................................................................................................ 43
Statistiek ................................................................................................................................................................................. 44
Hersiening van skewe en simmetriese data ............................................................................................... 44
Tweeveranderlike (bivariate) data : spredingsdiagramme regressielyne en
korrelasie .................................................................................................................................................................................... 44
Die telbeginsel en waarskynlikheid.................................................................................................................... 47
Hersiening van reëls vir onafhanklike, onderling uitsluitende en komplementêre
gebeurtenisse ......................................................................................................................................................................... 47
Gebruik Venn-diagramme boomdiagramme en gebeurlikheidstabelle ........................... 48
Die fundamentele telbeginsel .................................................................................................................................. 49
Toepassings van die telbeginsel om waarskynlikheidsprobleme op te los ................... 50




2

, Skool Instagram : @skool_notas
Epos : skoolnotas@icloud.com

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.




→ a; a + d; a + 2d; a + 3d; a + 4d; a + 5d; ... a + (n - 1) d
→ A is die waarde van die eerste term.
→ D is die algemene verskil tussen die terme, d = T2 – T1 = T3 – T2 = Tn – Tn-1
→ Tn is die waarde van die term in posisie n, dus Tn = a + (n - 1)d
→ N is die posisie van 'n term en kan slegs 'n positiewe heelgetal wees, ook bekend
as 'n natuurlike getal.

Byvoorbeeld
→ Oorweeg die rekenkundige reeks 3; 7; 11; 15; … 99
→ T1 = 3; T2 = 7; T3 = 11; T4 = 15

d1 = T2 - T1 d2 = T3 - T2 d3 = T4 - T3
=7-3 = 11 - 7 = 15 - 11
=4 =4 =4

→ Aangesien d1 = d2 = d3, het ons 'n algemene verskil van 4.
→ Die eerste term word gegee deur a = 3 en die algemene verskil word gegee deur d
= 4.
→ Ons bepaal die formule vir die nde term in die ry deur a = 3 en d = 4 te vervang in
Tn = a + (n - 1) d.
→ Dit gee ons Tn = 3 + (n - 1)(4)
→ = 3 + 4n - 4
→ = 4n - 1
→ Kontroleer die formule deur n = 1 te vervang om die waarde van T1 te kry, n = 2 om
die waarde van T2 te kry, ensovoorts.
→ As n = 1, dan is T1 = 4 (1) - 1 = 3
→ As n = 2, dan is T2 = 4 (2) - 1 = 7
→ As n = 3, dan is T3 = 4 (3) - 1 = 11
→ Die nde termformule, Tn = 4n - 1, kan gebruik word om die posisie van enige term in
die ry te bepaal as die waarde van die term gegee word.
→ Om te bepaal watter term 'n waarde van 99 het, vervang Tn = 99 in Tn = 4n - 1.
→ 99 = 4n - 1 ⇒ 4n = 100 en n = 25, dus T25 = 99, wat beteken dat die vyf -en -twintigste
term 'n waarde van 99 het.




3

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller elrilombard. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R120,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

64438 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 14 years now

Start selling
R120,00
  • (0)
  Buy now