This document contains a summary from Section A: Swanepoel A, Vivier FL, Millard SM and Ehlers R
Quantitative Statistical Techniques (Van Schaiks, 3rd Edition, 2009)
and Section B: Anderson DR, Sweeney DJ and Williams TA
Modern Business Statistics with Microsoft Office Excel
(Cengage Learning, ...
Contents
Section A: Optimization techniques .............................................................................. 2
Syllabus theme 1: Data Transformations and relationships with economic
applications ..................................................................................................................... 2
1.7. Linear inequalities and systems thereof .............................................................. 2
1.8 Graphical solution ................................................................................................. 6
1.9 Extreme point method ........................................................................................ 10
Syllabus theme 2 ........................................................................................................... 14
2.1 LIMIT OF A FUNCTION .............................................................................................. 14
2.2 Continuity .................................................................................................................... 20
2.3 Rate of change........................................................................................................... 23
2.4 Derivative of a function....................................................................................... 26
2.5 Differentiation rules .............................................................................................. 28
2.6 Higher order derivatives ...................................................................................... 30
2.7 Maxima and minima ........................................................................................... 31
2.8 Area under the curve .......................................................................................... 37
2.9 Application of definite integrals ......................................................................... 45
Section B ........................................................................................................................ 48
Syllabus Theme 1: Probability ....................................................................................... 48
1.2 Discrete Probability distribution........................................................................... 48
1.3 Continuous probability ........................................................................................ 55
Syllabus Theme 2: Statistical Inference ........................................................................ 61
2.1 Sampling and Sampling Distribution .................................................................. 61
2.2 Interval Estimation ................................................................................................ 73
2.3 Hypothesis testing (One sample) ........................................................................ 80
2.4 Hypothesis testing (Two Samples)....................................................................... 93
1
,Section A: Optimization techniques
Syllabus theme 1: Data Transformations and relationships with
economic applications
1.7. LINEAR INEQUALITIES AND SYSTEMS THEREOF
Definitions Linear function y =x (line)
Strict linear inequality y < x (region, dotted line)
Weak linear inequality y ≤ x(region, solid line)
Graphical 1. Plot the line
representation
2. Shade region of feasible solutions:
all coordinates that satisfy the inequality
Example 1 2x + 3y 12
weak linear inequality
1. Rewrite as y 4 – 2/3x
2. Plot line
o y = 0:
o 0 = 4 – 2/3x
o x=6
o x = 0:
o y= 4 – 2/3(0)
o y=4
3. Shade region
o if x = 0 then y 4
o if y = 0 then x 6
4. Graph
Example 2 x – y > -3
2
, 1. Rewrite as y 4 – 2/3x
2. Plot line
y = 0:
0=x+3
x = -3
x = 0:
y= 0 + 3
y=3
3. Shade region
if x = 0 then y < 4
if y = 0 then x > -3
4. Graph
Straight line is not included
System of Definition:
linear
When more than one linear inequality is represented on the same
inequalities
graph
Region of feasible solutions:
All points whose co-ordinates satisfy all the inequalities
simultaneously, thus the solution area
Example
1. 2x + 3y 12:
(0;4)(6;0)
2. x + 2y > 4
(0;2)(4;0)
3
, 3. x – y > -3
(0;3)(-3;0)
Shaded region = region of feasible solutions: consisting of all
points whose co-ordinates satisfy all the inequalities
simultaneously
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying this summary from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller tanyah1. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy this summary for R105,00. You're not tied to anything after your purchase.