100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
MAM2000W 2RA Notes (Real Analysis) R163,00
Add to cart

Class notes

MAM2000W 2RA Notes (Real Analysis)

1 review
 33 views  1 purchase

Provides an in-depth summary of the Abbott's take on real analysis and holds true value in studying for an exam.

Preview 4 out of 38  pages

  • January 24, 2023
  • 38
  • 2022/2023
  • Class notes
  • Dr. n.r.c. robertson
  • All classes
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
All documents for this subject (34)

1  review

review-writer-avatar

By: legendr • 5 months ago

avatar-seller
theolinnaidoo1
REAL ANALYSIS
PREP

, THE WELL-ORDERING PRINCIPLE
the well sanderling principle

AXIOM 2 [ THE WELL -
ORDERING PRINCIPLE ] :




Every non -



empty subset of 1N has a smallest element .




THEOREM 3 [ THE PRINCIPLE OF MATHEMATICAL INDUCTION ] :


For each K C- IN
,
let PCKI be a
logical proposition concerning
the number K ( Pllc) is true / false
depending
the value of K) If Pll ) is true and for each C- IN there of that
on . n
,
is some
way showing
Pln ) true that Plnti ) Therefore PCKI true for all
being implies is true .
is KEN .




THEOREM : 2 is not a rational number

Proof [ proof contradiction ]
: if 52 is rational by
↳ : .
52 =
Pig pig C- Z

↳ Assume 9 C- IN
q > 0 : .




↳ : 52 is rational → s= {q c- IN : Eq C- Z } ≠ ∅
↳ has smallest element [ Well
s a
Ordering ] go .




↳ : 1 ( 2 [ 4 i. I < T2 ( 2


↳ Oc S2 -
I Ll


↳ 9 , =
152-1190
i. 0C 91 (
go


↳ But
go C- S
,
so 5290 C- Z

i.
9 5290 C- Z
go
-

, =




↳ But 0cg , 91 be C- IN and
cqo i. must 91<90
↳ However : 5291 =
5215290 -90 ] 290-5290 = .
!
9, C- S



↳ Contradicts go is the smallest element of 5



NUMBER SYSTEMS

IN -


natural numbers { 1,2 , 3,4 ,
. . . }
Z -


the
integers { . . .

, -3 , -2 , -1
, 0,112,3 }

-


rational numbers { mln : MEZ in C- IN }
IR real numbers { }
-

-


x.ro




Algebraically ,
it is difficult to
distinguish R and 02 . Thus we need another axiom .




Natural numbers

↳ Every subset has a smallest element CW-0.PT
↳ Natural lm.nl
separated
"
numbers are
" :
Mtn =) ≥ I


They are bounded below : n so for all n C- IN


A subset ,
A ≤ IR is bounded below it there exists an M C- IR sit .
m≤ x for all ✗ C- A

i. We call m a lower bound for A.

lower bound

Any
"

than
"

number smaller M is also a .

,THE COMPLETENESS AXIOM OF IR
THE COMPLETENESS AXIOM Ii


Any non -



empty subset
of IR that is bounded below has a
greatest lower bound .




To be the lower bound for A must
greatest a set
, a number m
satisfy two conditions :
① m ≤ x for all sc C- A

② For each number n with men ,
there is an x EA with x Cn .




THE COMPLETENESS AXIOM 2 :


of that above has least
Any non -




empty subset IR is bounded a
upper bound .




A c- IR is bounded above it there exists a number m such that x ≤ m for all ✗ C- A .




We call M for
an
upper bound A.

It A is bounded above → -
A = § -

x KEA } is bounded below
, .




Greatest lower bound = infimum
least upper bound supremum
=




MAXIMUM AND SUPREMUM


Maximum [ definition] We b the maximum of the set A it
say
: :
is

① for C- A a ≤ b
every a
,




② b C- A

→ Max IA ) =
maximum of A



Supremum [ definition] We that b is the least bound of A it :

say
:

upper
① for C- A a ≤ b
every a ,

② whenever a ≤ c for every a C- A
,
then b ≤ C.

→ sup (A) supremum of A
=
.




* A set need not have a maximum . [ even it it is bounded above]
* A set which is bounded above
always has a
supremum .




* It Max (A) exists , Max / A) C- A , sap (A) does not need to be an element of A .




* It above : 1A )
Max / A) exists
,
A is bounded SUPIA ) = Max




MINIMUM t INFIMUM


Minimum [ definition] We b the of the set A it
say
: :
is minimum
① for C- A a ≥ b
every a
,




② b C- A

→ mail.AT =
maximum of A


b the of it
Infimum [ definition] we that is
greatest lower bound A :

say
:



① for C- A a ≥ b
every a ,

② whenever a
≥ c for every a C- A
,
then b ≥ c.

infimum (A)
'


→ = int


* A set need not have a minimum [ even it it is bounded below ]
A has
* set which is bounded below always a infimum
* It Min / A) exists , min (A) C- A int CA ) does not need to be an element of A
,
.




* It min / A) exists
,
A is bounded above : int (A) = min .LA )

, BOUNDED SUBSETS

A subset A of IR is
bounded it it is bounded both above and below .




A is bounded iff .
there is a number B such that :
1×1<13 for all x C- A

Example : 1- =
{ sin ≥ : KEIR } where B=I




CONSEQUENCES OF THE
COMPLETENESS AXIOM
THE EXISTENCE OF TE


let A = { x c- IR : x2 C2 }
↳ A- =/ ☒ since 0 C- A




__ 2
y
- - - - - -




y
-
- -




1

I

:
• •



A
42




Claim : The number 2 is bound for A
an
upper

Proof : ① Consider number 0C with >2
any
a


i. x2 > 2x 74 Thus x & A
,




② The Completeness Axiom tells us that A has a least
upper bound ,
S .




that 0 's ≤ 2 and
such
sup (A) 2
=

<




Claim ; s =
52



Proof first
:
① Suppose that SZCZ

② For h 20 , Csth / 2 =
S2 tzsh th
?

any
③ It 0 < hcl ,
then hzch ,
so Csthl ? L S2 1- 4h th [ 5=2 ]

i. Csth )2 ( S2 1- 5h



④ By choosing h
sufficiently small
, we can make s2 1- 5h 22

But then 5th C- A :S isn't an
upper bound for A

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller theolinnaidoo1. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R163,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Start selling
R163,00  1x  sold
  • (1)
Add to cart
Added