100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Real analysis: Sequences and series R100,00
Add to cart

Summary

Summary Real analysis: Sequences and series

 11 views  0 purchase

This document provides an in-depth introduction to the series and sequences in real Analysis. It is short yet it does not confiscate any detail in regards to what is being provide in it. It ranges from What sequences are to Absolute and conditional convergence

Preview 2 out of 12  pages

  • September 4, 2023
  • 12
  • 2023/2024
  • Summary
All documents for this subject (34)
avatar-seller
Lungathem
Sequences and series in Real Analysis
Lunga Buthelezi
25 August 2023


1 Sequences
1.1 Definition
A sequence of real numbers (or a sequence in R) is a function defined on the set
N = {1, 2, . . .} of natural numbers whose range is contained in the set R of real
numbers.

In a broader context, it is important to recognize that a sequence
within a set A can be rigorously defined as a function f : N → A.
This formalism is often denoted using the concise notation an =
f (n), with n being an element of the natural numbers N.
However, within the realm of 2RA (Real Analysis), our primary
focus revolves around the study of real sequences f : N → R. This
specialization enables us to delve deep into the properties, limits,
and convergence behavior of sequences within the real number
system, we are doing Real Analysis after all

In other words, a sequence in R assigns to each natural number n = 1, 2, . . . a
uniquely determined real number. If (an ) : N → R is a sequence, we will usually
denote the value of X at n by the symbol an rather than using the function
notation A(n). The values an are also called the terms or the elements of the
sequence. We will denote this sequence by the notations

(an ), (an : n ∈ N ).

Of course, we will often use other letters, such as (bk ), (ci ), etc., to denote
sequences.
We purposely use parentheses to emphasize that the ordering induced by
the natural order of N is a matter of importance. Thus, we distinguish nota-
tionally between the sequence (an : n ∈ N ), whose infinitely many terms have
an ordering, and the set of values {an : n ∈ N } in the range of the sequence
that are not ordered. For example, the sequence X := ((−1)n : n ∈ N ) has in-
finitely many terms that alternate between 1 and −1, whereas the set of values
{(−1)n : n ∈ N } is equal to the set {1, −1}, which has only two elements.


1

, Sequences are often defined by giving a formula for the nth term xn . Fre-
quently, it is convenient to list the terms of a sequence in order, stopping when
the rule of formation seems evident. For example, we may define the sequence
of reciprocals of the even numbers by writing
1 1 1 1
(an ) := , , , ,...,
2 4 6 8
though a more satisfactory method is to specify the formula for the general term
and write
1
(an ) := : n ∈ N,
2n
or more simply, (an ) = (1/2n).
Another way of defining a sequence is to specify the value of x1 and give a
formula for xn+1 (n ≥ 1) in terms of an . More generally, we may specify x1 and
give a formula for obtaining xa+1 from a1 , a2 , . . . , an . Sequences defined in this
manner are said to be inductively (or recursively) defined.


2 Examples of sequences
(a) If b ∈ R, the sequence B := (b, b, b, . . .), all of whose terms equal b, is called
the constant sequence b. Thus, the constant sequence 1 is the sequence
(1, 1, 1, . . .), and the constant sequence 0 is the sequence (0, 0, 0, . . .).
(b) If b ∈ R, then B := (bn ) is the sequence B = (b, b2 , b3 , . . . , bn , . . .). In
particular, if b = 12 , then we obtain the sequence

1 1 1 1
, , ,..., n,....
2 4 8 2

3 The Limit of a Sequence
There are several different limit concepts in real analysis. The notion of a limit
of a sequence is the most fundamental, and it will be the primary focus of this
chapter.

3.1 Definition
A sequence A = (an ) in R is said to converge to a ∈ R, or a is said to be a limit
of (an ):

if for every ε > 0 there exists a natural number N (ε) such that for
all n ≥ N (ε), the terms an satisfy |an − a| < ε.

If a sequence has a limit, we say that the sequence is convergent; if it has
no limit, we say that the sequence is divergent.



2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through EFT, credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller Lungathem. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for R100,00. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Start selling
R100,00
  • (0)
Add to cart
Added